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Abstract
Undesired navigation in browsers powers a significant class of at-
tacks on web applications. In a move to mitigate risks associated
with undesired navigation, the security community has proposed
a standard that gives control to web pages to restrict navigation.
The standard draft introduces a new navigate-to directive of the
Content Security Policy (CSP). The directive is currently being im-
plemented by mainstream browsers. This paper is a first evaluation
of navigate-to, focusing on security, performance, and automati-
zation of navigation policies. We present new vulnerabilities intro-
ducedby thedirective into thewebecosystem, openingup for attacks
such as probing to detect if users are logged in to other websites or
have active shopping carts, bypassing third-party cookie blocking,
exfiltrating secrets, as well as leaking browsing history. Unfortu-
nately, the directive triggers vulnerabilities even in websites that do
not use the directive in their policies. We identify both specification-
and implementation-level vulnerabilities and propose countermea-
sures to mitigate both. To aid developers in configuring navigation
policies, we develop and implement AutoNav1, an automated black-
box mechanism to infer navigation policies. AutoNav leverages the
benefits of origin-wide policies in order to improve security without
degrading performance. We evaluate the viability of navigate-to
and AutoNav by an empirical study on Alexa’s top 10,000 websites.
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1 Introduction
As the power of the web platform grows, attackers increasingly tar-
get client-side vulnerabilities [3, 9, 12, 16, 18, 37, 39, 43, 50, 56, 57].

1Our implementation is available online on https://www.cse.chalmers.se/rese
arch/group/security/autonav/
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Exploiting these vulnerabilities is effective because clients manip-
ulate highly sensitive information, like login credentials, banking,
health, and location data, on behalf of the user.

1.1 Motivation
One of the bigger classes of client-side security vulnerabilities on to-
day’sweb is cross-site scripting (XSS) [45]. AnXSS vulnerability gives
an attacker the power to execute JavaScript code on another website.
This can be used to steal user credentials, change the behavior of the
application or render the website unusable. A common approach to
mitigate this problem is to let servers send extra security policies
along with each HTTP response. The web browser will then enforce
these policies, for example, by restricting which scripts to allow on
the webpage. These security policies have been defined by the web
security community as part of Content Security Policy (CSP) [63].

Navigation attacks The current CSP standard (level 2 [63]) does
not address attacks via navigation. Attackers can thus freely redirect
users to malicious or inappropriate websites. This type of attack can
affect the confidentiality, integrity and availability of the attacked
website. For confidentiality, an attacker with injection capabilities
can inject the following script to leak the secret cookie.
1 <script >

2 window.location = "http :// evil.com/?c="+document.cookie;

3 </script >

When the script is executed the user will be sent to http://evil.c
om, alongwith their cookies, potentially allowing the attacker to take
over theiraccount. Inaddition toonlystealing thecookie, theattacker
could launch a phishing attack by designing http://evil.com to
look like the attackedwebsite. Here the user could be asked to supply
more confidential information or be forced to download malicious
software. The availability of the website is also compromised as
every user visiting the page containing the injected script will be
sent away. Note that while CSP can block scripts, an attacker could
also force the user to perform a navigation by using meta tags as
shown below.While not valid HTML, modern browsers will follow
meta redirects in the HTML body.
1 <meta http -equiv="refresh"

2 content="0;URL='http :// evil.com/'" />

The navigate-to directive Tomitigate these problems theWorld
WideWebConsortium (W3C) has drafted a standard for the newCSP
directive navigate-to [61]. This directive has already been imple-
mented in Chrome [36] and Firefox [28]. A commonmotivation for
the directive is to increase the security on websites, as well as, give
advertising platforms better control over navigations in ads [40].We
illustrate this in two example scenarios: HTML/JavaScript injection
and malicious advertisement.

HTML/JavaScript injection Understanding the spaceofnavigation
links on a website can improve security thanks to navigate-to. By
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limiting thepossiblenavigations, attackerswill not be able to redirect
users. A real-world example of where this policy would have helped
is a vulnerability on blockchain.info [27]. Attackers were able to
injectHTMLand JavaScript into the search functionon thepage.This
meant that a URL similar to blockchain.info/?search=<code>,
which appears to point to blockchain.info, could redirect the user
to another website. This is known as a reflective XSS vulnerabil-
ity [48], as the code in the URL is reflected onto the page. Although
blockchain.infousedCSPtomitigateXSS, itwasstill possible to in-
jectHTML code that forces a redirect.With the newdirective, the fol-
lowingCSP policy canmitigate this type of attack. This policy blocks
any navigation attempt to anything but self, i.e. blockchain.info.
1 navigate -to 'self'

Malicious advertisement Advertisement platform providers bene-
fit from ensuring that users who click on their ads end up on the cor-
rect page. This is especially important if the pages where the ads are
served are sensitive to inappropriate material, e.g. websites for kids,
governments, or highly respected financial websites. Using the new
directive, advertisers would be able to block navigations leading to
incorrect ads. The policy is required because even if the target site for
the ad is correctwhen the ad is bought, thewebsite can at a later stage
behackedormisconfigured.GoogleAds could, for example, serve the
following policy with an ad from shoes.com. This would only allow
navigation to https://shoes.com, blocking both the HTTP ver-
sion, as well as, possible deep-links to apps like app://shoes.com.
The unsafe-allow-redirects keyword allows for any number of
server-side redirections before reaching shoes.com.
1 navigate -to https://shoes.com 'unsafe -allow -redirects '

1.2 Research questions
The standardization [35, 61] and implementation [28, 36] efforts for
navigate-to are well underway. The time is critical to ask ques-
tions on the security, performance, and adoptability of the proposed
directive, before its adoption starts on the web. (Our analysis at the
time of the writing confirms that the landing pages of Alexa’s top
10,000 domains are yet to contain navigate-to CSP headers). By
pursuing these questions, our goal is to deepen understanding of
navigation policies and their impact, contribute to the emergence of
the new standard, and to utilize our findings for settling the ongoing
discussions by the community [29].

Security While there seems to be much to gain from a navigation
policy, what is the impact on the security of the entire web ecosys-
tem? For a fully-fledged security evaluation,we seek to uncover both
new vulnerabilities and amplifying effects of known vulnerabilities.
Our methodology is thus to investigate possibilities of exploiting
the directive by a comprehensive range of attackers defined in the
security literature [39]: injection [5], gadget [6], web [2] and passive
network [25] attackers. Even though these attackers share some
capabilities, they each have unique abilities, e.g. reading network
traffic or hosting websites, and as such require individual analysis.
This brings us to the questions of security:Does the new policy “break
the web”? Does the new policy introduce security vulnerabilities? How
can they be mitigated and by whom?

Automatization Once thenewdirective is secured, howcanweaid
its adoption? CSP has been notoriously hard to adopt, introducing

insecure policies or broken websites [56, 57]. To help developers use
the new directive, and increase both usability and adoptability, we
investigate the possibility of automatically generating navigation
policies. Hence, the question: Can automatic mechanisms be used to
help generate the new policy?

Performance In contrast to CSP directives like script-src, in-
tended to whitelist scripts that can be loaded by a webpage, the
navigate-to directive will whitelist possible navigations. This re-
sults in already lengthy response headers becoming even larger,
further increasing the overhead of security headers. This brings us to
the question of performance:What are efficientmethods for delivering
the new policy?

1.3 Contributions
This paper is a first systematic evaluation of navigate-to. Our goal
is to both initiate research on navigation security and to affect the
emerging standards for navigation policies.We examine the security
implications, efficiency, and the possibility of automatic generation
of the new navigate-to policy.

Security The intricate connectionsbetweenpolicies togetherwith
the growing complexity of the web results in newmechanisms be-
coming more challenging to incorporate into the ecosystem. This
motivates the need to analyze multiple types of attackers, as well as,
reexaminingexistingmechanisms incombinationwithnewones.We
follow amethodology of examining the effects of navigate-to on a
comprehensive range of attackers: injection [5], gadget [6], web [2]
andpassivenetwork [25]attackers.Byscrutinizing the full attack sur-
face of the new directive, with respect to different types of attackers,
we identify specification- and implementation-level vulnerabilities
that can be exploited (Section 3). The vulnerabilities allow attackers
to probe other websites to detect if users are logged in or have active
shopping carts, bypass blocking mechanisms of third-party cookies,
leak browsing history, and open up new methods for exfiltration.
This demonstrates that the directive “breaks the web” in the sense of
introducing vulnerabilities even in otherwise secure websites that
do not use the directive in their policies. We present mitigations to
security problems, both for web and policy developers (Section 4).

Automatization Looking ahead when the proposed mitigations
are in place, our goal is to aid in the adoption of navigate-to.
We develop AutoNav, an automatic mechanism for navigation pol-
icy inference (Section 5). AutoNav crawls websites and generates
navigate-to policies. The goal of this mechanism is to simplify the
deployment of the new directive by helping web developers and se-
curity engineers to find fitting policies for their websites. To further
improve security, AutoNav can also generate origin-wide policies
for the new origin policy deliverymechanism that is currently being
drafted [59]. This improves security by applying the policy to the
entire origin, covering pages that are easy to forget, like error pages.
We implement and evaluate the mechanism by an empirical study
(Section 6). In our experiments, we craw 100 pages per domain for
10,000 domains. Based on a subset of 80 pages, AutoNav generates
a policy for the remaining 20 pages. For 42% of websites, AutoNav
generated apolicywhich fully covered the 20pages, and at 59%19out
the 20 pages were covered. Further investigation into the category
of websites shows that shopping websites and adult websites are the
easiest to cover.
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blockchain.info/?search=<code>
blockchain.info
blockchain.info
blockchain.info
shoes.com
https://shoes.com
app://shoes.com
shoes.com
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Performance To evaluate the performance impact of the policywe
perform an empirical study (Section 6). Based on 10,000 crawled do-
mains fromAlexa’s top 10,000, the policywill result in anoverheadof
215bytes foreachHTTPresponse.Wecreatesimplificationstrategies
to find a balance between security, performance andmaintainability.
These simplifications convert complicated policies with multiple
subdomains to more manageable policies by using wildcards. For
example, instead of including all language-specific subdomains from
Wikipedia navigate-to *.wikipedia.comwould be enough. Our
simplification algorithm decreased the overhead by between 40%
and 47%. Furthermore, we show that the use of an origin policy
would result in an overhead of 1904 bytes in total, as opposed to per
HTTP response. This is further decreased to 1004 bytes by using our
simplification algorithm. A 900 byte reduction might not seem like
much, but it can have a big impact on larger websites [21].

2 Background
Setting the background, we present the threat model in terms of
relevant attackers. We describe CSP and how it relates to the origin
policy. Finally, we explain navigation methods and how they are
treated in the navigate-to directive.

2.1 Threatmodel
The main goal of the navigate-to directive is to give web develop-
ers control over where users can navigate from their website. The
assets that need protecting include confidentiality, integrity and
availability. Previous research has already shown how confidential
information, such as cookies, can be exfiltrated usingnavigation [65].
While the new directive is a step in the right direction to address
data exfiltration, Zalewski [65] points out that control over naviga-
tion is not necessarily enough. Attackers could, for example, inject
HTML or JavaScript that change documents from private to pub-
lic on a website like Dropbox. Forced navigation can also be used
for phishing attacks by redirecting users to a similar-looking, but
attacker-controlled, website.

Modern web browsers support many different methods for nav-
igation, e.g. by clicking on a link, submitting a form, etc. These
navigation methods, and the subset that the navigate-to directive
is intended to apply to, are explained in Sections 2.4 and 2.5.

As mentioned above, we are interested in a comprehensive secu-
rity evaluationof the impact of the directive on the entireweb ecosys-
tem.Hence,our threatmodel includes four typesofattackers fromthe
security literature [39]: injection, gadget,web andnetwork attackers.
In practice there is some overlap between the classes, for example, an
attackerwithwebattacker capabilitieswill usually alsohave injection
attacker capabilities. However, the best mitigation strategymight be
differentdependingonwhichspecific classweneed todefendagainst.
Therefore it is important to study each distinct class of attacker.

Injection attacker The injection attacker [5] is able to inject con-
tent into a website. A typical example is a user who can post content
on a forum. If the user’s post contains JavaScript then that code could
be executed by other users on the site, in this scenario, with the goal
to force a navigation.

Gadget attacker The gadget attacker [6] is similar butmore power-
ful as they are allowed to host code, or gadgets, on other websites. A
notable example is JQuery which is a JavaScript snippet that is used

by many websites. Since JavaScript do not support any isolation,
these gadgets run with the same capabilities as other scripts on the
website. A malicious gadget could exfiltrate information from the
website it is integrated to, modify content on pages or even navigate
the user away from the website.

Web attacker Theweb attacker [2] is able to host and configure
a full website. This is especially important for advertisers who want
to ensure that the landing page does not redirect to anything other
than what was specified in the ad.

Passive network attacker A passive network attacker [25] can lis-
ten in on all the traffic sent from and to a client but can not decrypt
HTTPS. If the traffic is not encrypted, the attacker can read pass-
words and session cookies being sent to the server.

Note that navigate-to is not designed to handle network attacks.
Yet we pay attention to network attackers in our effort to analyze
the impact of the directive on the entire web ecosystem.

2.2 CSP
CSP is intended to mitigate cross-site scripting (XSS) and other code
injection attacks. The current version of CSP, level 2, is supported
by all major web browsers [26]. Level 3, which includes the new
navigate-to directive, is being discussed and drafted [61].

CSP protects the users by specifying which resources and scripts
are allowed on a page. The web server sends the CSP policies each
time a user requests a page. These policies are then enforced by
the browser to, among other things, block XSS. The policy below
will only allow scripts to be loaded from the current origin, still
blocking any injected inline scripts. In addition, the reporting header
Content-Security-Policy-Report-Only [33] can be used to re-
port policy violations without enforcing them. These reports are
sent as POST requests to the server. They can also be detected using
SecurityPolicyViolationEvent in JavaScript.
1 Content -Security -Policy: script -src 'self'

2.3 Origin policy
Today, CSP headers are sent with every HTTP(S) response, which
is a concern for both safety and performance [50]. For security, it is
easy to forget the policy on special pages, like error pages [59]. It also
harms performance because servers need to repeat the same policy
for each response, even if the policy should apply to all. To address
this, specificationsarebeingdrafted [59], implemented [60], andeval-
uated [50] to enable origin-wide policies, known as origin policies [59]
or originmanifests [50]. Using an origin policy, the server only needs
to include once which policies should apply to the whole origin.

2.4 Navigation
Navigations can be performed in many different ways by browsers,
e.g. by clicking on a link, submitting a form or running JavaScript.
Navigation methods can be split into two different categories, user-
initiated or document-initiated. While navigation is defined in the
Fetch [52] and HTML [4] standards, the exact methods available
depend on the web browser implementation. Wemake an effort to
summarize themost commonmethods in Table 1. TheAutomatic col-
umn shows if the navigationmethod canbeperformed automatically.
This is true for all JavaScript function and, in case JavaScript is al-
lowed, <a> and <form> tags. It is worth noting that while a web page
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cannot read a user’s browsing history, it can initiate navigation to go
back or forward in the browser history. There are many .location
functions in JavaScript that can navigate, e.g. window, document,
parent, etc. They all use the Location object defined in the HTML
standard [4]. Some functions, like window.navigate, only works
in Internet Explorer [11]. The last column specifies which methods
navgiate-to affects.

Table 1: Navigation methods together with initiator and possibility
to automatically navigate.

Method Initiator Automatic Affected
<a> tag Document With JavaScript ✓
<form> tag Document With JavaScript ✓
<meta> tag Document Yes ✓
<iframe> tag [51] Document Yes ✓
window.open [53] Document Yes ✓
*.location [4] Document Yes ✓
window.navigate [11] Document Yes ✓
Typing the URL User No
History buttons User & Document Yes
Home button User No

2.5 Navigate-to directive
The navigate-to directive gives developers the power to control the
navigations a document can initiate. Document initiated navigations
are discussed in Section 2.4. This directive makes it harder for at-
tackers to inject code to redirect users from legitimate websites. For
example, if an attacker manages to inject links on disney.com then
Disney’s reputation is at stake if links lead to inappropriate websites.
To tackle this, Disney could add the following to their CSP policy:
1 navigate -to *. disney.com *. thewaltdisneycompany.com

This would instruct the browser to only accept navigations to subdo-
mains of disney.com and thewaltdisneycompany.com, and block
all navigations to other websites. The standard also introduces the
new keyword unsafe-allow-redirects, which allows any redi-
rects as long as the final destination is allowed by the policy. It is
deemed less safe since it does not have full control over all the sites
in the redirect chain. However, it is still better than nothing in terms
of limiting navigations.

The navigate-to directive is currently being standardized by
W3C [61] and implemented in Chrome [36] and Firefox [28]. It is
available in the current version of Chrome (version 77.0.3865), and
other Chromium-based browsers like Edge and Brave, behind a flag
that enables experimental features. It is also available in Firefox
Nightly (Version 71.0a1) behind a flag [28].

3 Vulnerabilities
This section presents vulnerabilities and security concerns related
to the navigate-to policy. These vulnerabilities are not naviga-
tion attacks, but rather vulnerabilities that become possible due to
navigate-to. Except for the last vulnerability inSection3.3.3,where
we rather want to show that a small improvement to navigate-to
cansolveanexistingproblem.Thepolicy introducesnewmethods for
acquiring privacy-sensitive information, circumvention of security
mechanism and data exfiltration. All the attacks described in this sec-
tion have been tested in practice. While some of the vulnerabilities,
like the data exfiltration, relies on the existence of other vulnerabili-
ties, like content injection, the navigate-to adds a new layer to the

evil.com a.io/secret/ a.io/login/

Unauthenticated

Figure 1: A user visiting evil.comwill be navigated to a.io/secret/.
If they are not logged in, they are further redirected to a.io/login/.

attacks. This possibility of combining attacks shows the importance
of reexamining existing ones when introducing newmechanisms.

3.1 Methodology
To systematically find vulnerabilities we distinguish vulnerabili-
ties relating to the specification of the navigate-to directive and
vulnerabilities related to its implementation. For each category, we
divide the investigation of vulnerabilities pertaining to confidential-
ity, integrity and availability, in accordance with the CIA triad. We
draw on our threat model and examine vulnerabilities with respect
to injection, web, gadget, and passive network attackers. Finally,
we analyze how the directive can be used to circumvent modern
countermeasures, such as third-party cookie blocking.

The presentation of the vulnerabilities is ordered by our estimate
of their impact, from high to low. Table 2 lists the vulnerabilities we
discover together with their corresponding attacker model. Inter-
esting to note is that resource probing and Google Search profiling
can be exploited to attack websites that themselves do not use the
navigate-to directive. This results in previously security websites
becoming insecure.

Table 2: The uncovered vulnerabilities together with corresponding
attackermodel.

Vulnerability / Attacker Injection Web Gadget Passive network
Resource probing ✓
Google Search profiling ✓
Third-party cookie bypass ✓
History sniffing ✓
Data exfiltration ✓ ✓
Ads leaking data ✓

3.2 Specification
The following vulnerabilities are present in the specification. This
means that any browser following the specification correctly will
be vulnerable.

3.2.1 Resource probing In cases where web applications redirect
based on sensitive resources, these resources could be probed. For
example, probing for the existence of Dropbox files. The probing
attacks in this section are deterministic, as opposed to other attacks
that rely on timings [55]. The attacks are also general and could po-
tentially be used on any website, not solely on advertiser platforms
such as the attack presented by Venkatadri et al. [54].

A malicious website, i.e. a web attacker, can navigate a user to
dropbox.com/preview/wallet.txt to detect if a user has a file
named wallet.txt. If no such file exists then the user is redirected
to dropbox.com/home/wallet.txt, making it possible to craft a
policy which blocks /preview/ but not the redirection to /home/,
like the following. Note here that we only use path-sensitivity to
block /preview/. If we are redirected, then path-sensitivity is no

disney.com
disney.com
thewaltdisneycompany.com
evil.com
a.io/secret/
a.io/login/
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longer available and we only have to allow dropbox.com. The main
differencecompared topreviousworkonCSPredirections [23] is that
we only need path-sensitivity for the first request, not the redirects.
1 navigate -to 'unsafe

-allow -redirects ' https://www.dropbox.com/not_preview /;

By utilising invisible iframesmultiple files can be checked in parallel,
without the user being navigated away from the malicious website.

One specific application of resource probing that has been re-
searched before is login detection. Previous methods [20, 32] relies
on third-party cookies, which can be blocked by the user or by the
proposeddefault SameSitepolicy [62]. Instead, note that anavigation
tofacebook.com/settings/will redirect the user to the login page,
facebook.com/login.php, if they are not authenticated, similar to
Figure1.Byallowingonlyoneof theseURLs in thepolicy, theattacker
can differentiate between a successful navigation and a blocked one.
This feature makes our method more powerful and general.

We have also found that on some E-commerce websites it is possi-
ble to detect if a customer has anything in their shopping cart. This
is because navigating directly to the shopping cart or checkout page
sometimes redirects the user depending on the content of the cart.
PrestaShop, which is an E-commerce platform used on hundreds
of thousands of websites [8], does exactly this. By visiting example.
com/en/order a user will be redirected to example.com/en/cart,
assuming example.com uses PrestaShop.

Some of the probing attacks can leak more data if they are done
in an active fashion. The PrestaShop attack can be improved to, in
theory, enumerate the full cart. This is due to a Cross-Site Request
Forgery (CSRF) [47] vulnerability in PrestaShop, currently being
disclosed, which allows an attacker to add and remove items. Using
this method an attacker can repeatedly remove items and then check
if the cart is empty.

These are only a few examples we have found where redirects are
based on sensitive data. We believe that many more such redirects
currently exists on the web. Furthermore, navigations can bypass
lax SameSite cookies, making the attack possible on sites where
previous CSRF attacks were not possible.

3.2.2 Google Search profiling Google Search relies on personalized
search [19], meaning that the results of a search query are based on
the users’ previous interactions with Google. A recent study [24]
shows that users are put into so-called “filter bubbles” by Google,
resulting in varying result when searching for political terms such
as “gun control” or “immigration”. A web attacker can craft a mali-
cious website which uses the navigate-to directive together with
Google’s I’m feeling lucky function to extract top results from visi-
tors. This type of extraction attack is called cross-site search and has
previously been successfully mounted against Gmail and other web-
sites [17]. The main difference is that previous methods have relied
on timing, whereas our method is fully deterministic. Castelluccia
et al. [10] were also able to infer sensitive information about users
based on Google Searches. However, their approach required net-
work attacker capabilities and assumed the traffic was unencrypted,
which is not the case anymore.Our attack can bemounted by anyone
with the capability to set up a website.

The attacker can then use these top results from Google to infer
these filter bubbles. Using the URL https://www.google.com/sea
rch?q=QUERY&btnI, Google will automatically redirect the user the

a.io track.com

User b.io

Figure 2: When a user visits a.io or b.io, they can force the user to
obtain first-party cookies from track.com.

top result for term “QUERY”. Therefore the I’m feeling lucky function
acts as an open redirector, which is something bothOWASP [46] and
Google [34] themselveswarn about. It is well known that Google has
this problem but so far they choose to accept the risk [1]. However,
the navigate-to directive adds a new dimension to the problem as
it enables attackers to infer data about users.

To exploit this the attacker can specify a report-only policy that
only allows google.com, as shown below. The redirect will vio-
late the policy and the browser will dutifully report which domain
was in violation to the malicious website. The attacker can itera-
tively update the query to get more results. Assuming searching
for “news” would return news.com, then the next query would be
“news -site:news.com”, which excludes news.com and perhaps re-
turns reports.com instead. Another attack vector would be other
search engines using this approach to directly copy personalized
search results from Google, similar to what Bing did [41].
1 Content -Security -Policy -Report

-Only: navigate -to 'unsafe -allow -redirects ' google.com

3.2.3 Third-party cookie bypass A cookie is a piece of data that web-
sites can save locally on users’machines. [31] Depending on how the
cookie is acquired, it will either be considered a first-party cookie or
a third-party cookie. A navigation will result in first-party cookies
while image request and similar results in third-party cookies.

Third-party cookies are useful for advertisers [14] as it allows
them to use small tracking pixels [15] for tracking users. Modern
browsers allow users to block third-party cookies or do it by de-
fault [42].

Previouswork has demonstrated howCookie Synchronization [7,
38] can be used by ad platforms to effectively break the same-origin
policy. Privacy-aware users canmitigate this by blocking third-party
cookies altogether. However, the navigate-to directive introduces
a new method for advertisers to circumvent this by using naviga-
tions. As it requires control over the CSP headers, web attackers
are the main threat. Figure 2 shows a user visiting a.io, then being
forcibly navigated to track.com and acquiring a first-party cookie.
Using the following policy, the redirection will be blocked, making
the attack unnoticeable to the user.
1 navigate -to 'unsafe -allow -redirects '

3.3 Implementation
The following vulnerabilities are due to implementation decisions.
We focus on Chrome’s [36] and Firefox’s [28] implementations of
navigate-to,

3.3.1 History sniffing The navigate-to policy can, in some cases,
be exploited by a web attacker with a malicious website to probe

example.com/en/order
example.com/en/order
example.com/en/cart
example.com
https://www.google.com/search?q=QUERY&btnI
https://www.google.com/search?q=QUERY&btnI
a.io
b.io
track.com
google.com
news.com
news.com
reports.com
a.io
track.com
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https://target.com

https://target.com

307

301
http://target.com

X

Y

Figure 3: If target.com uses HSTS, and the user has visited the site
before, then the browser will automatically upgrade the connection
to HTTPS using a 307 redirect instead of a server side 301.

which websites a user has visited. The attack uses the fact that web-
sites using HSTS force the browser to remember and upgrade inse-
cure connections. Previous methods exploiting this have relied on
timing attacks which are nowmitigated [64].

Using navigate-to, a malicious website can make a POST re-
quest to another sitewhich usesHSTS but is not preloaded. If the site
redirects based on the POST data then the attacker might be able to
detect if a user has visited the site before. This is possible because if
the user has visited the site before it will result in an internal redirect
(HTTP 307), which keeps the POST data. Otherwise, the server will
redirect (HTTP 301/302), which drops the POST data. If the server
specifically performs a 307 redirect then the attack will not work.
By crafting a CSP that does not allow the redirect, the attacker can
differentiate between the two cases, denoted X and Y in Figure 3.
This is, for example, possible using the login function on the popular
social media website VK.

3.3.2 Data exfiltration and communication Previous research has
shown that data exfiltration is possible in the face of CSP [49]. The
usage of forms and links to exfiltrate data has also been studied [65].
However, the navigate-to policy introduces an improved method
for exfiltration, and two-way communication, based on JavaScript
together with navigation. This works in Chrome, but not Firefox, as
Chrome does not unload the page for navigate-to violations.

Consider a website using connect-src ’none’ and frame-src
’none’ to limit external loads asmuch as possible. The connect-src
directive protects against some exfiltration methods including XHR,
fetch and <a ping>, while frame-src will block exfiltration to
iframes. Assume the website uses unsafe-allow-redirects fol-
lowed by a list of allowed URLs. Note here that we show that unsafe
has implications beyond the scope of restricting navigation. An
attacker capable of injecting JavaScript, i.e. either an injection or
gadget attacker, can now use window.location, as shown in the
listing below, to exfiltrate arbitrary data. Each navigation request
will exfiltrate data, then be blocked by the policy, as the attacker can
choose awebsite outside theCSPwhitelist. Furthermore, by adding a
SecurityPolicyViolation event listener the attacker can inspect
theblockedURI in theviolation.To senda response,evil.comwould
redirect the request to a subdomain like <msg>.evil.com.
1 function exfiltrate (data) {

2 window.location = "http :// evil.com/?d=" + data;

3 }

The main difference between not using navigate-to and using the
policy described is that by blocking the navigations, the control is
returned to the attacker, allowing for further stealth exfiltration and
communication.

3.3.3 Ads leaking data We have found that ads served over HTTPS
can still leak the final landing page to a passive network attacker if

an ad in the redirection chain is unencrypted. While network-level
eavesdropping is outside of CSP’s threat model, the navigate-to
directive presents a great opportunity to fix this problem. The prob-
lem stems from the fact that when a user clicks on an ad they can
be channeled through multiple tracking websites. Listing 1 shows a
chain where the user is redirected to three different websites before
the landing page. We performed a small empirical study using the
same dataset as in Section 6. We extracted all iframes and compared
their source URL to a list of known advertisement platforms, e.g.
DoubleClick. If the URL matched we followed it and recorded the
redirects. This resulted in 24650 unique ads, of which 26.7% have a
website between the advertisement platform and the landing page.
This highlights the need for advertisement platforms to consider
potential redirects from tracking websites and further motivates the
need for the navigate-to directive.
1 https://www.googleadservices.com /...

2 http://www.kqzyfj.com /...

3 http://cj.dotomi.com /...

4 http://www.emjcd.com /...

5 https://<landing page >/...

Listing 1: Example of an ad chain containing three different unen-
crypted domains between the encrypted ad platform and landing
page.

As can be seen in Listing 1, both the first and last websites use
HTTPS but there exist sites between that are unencrypted. This is
very hard for a user to detect as both the ad and the landing page
seems secure. The problemwith having HTTP in the chain is that
an eavesdropper can follow the request and find the landing page.
Our empirical experiments show 10.6% of the ads follow this pattern.
As ads becomemore personal this becomes a privacy concern. Ad-
vertisements related to economic status or specific diseases might
be leaked without the user’s knowledge.

4 Countermeasures
This section presents countermeasures to the vulnerabilities in 3.
The countermeasures cover the specification,mitigations forweb de-
velopers, as well as, implementation improvements in web browsers.
Similarly to thevulnerabilities inSection3wedistinguishspecification-
and implementation-level countermeasures.

4.1 Specification
4.1.1 Resource probing Previous login detection methods have
forced web developers to rewrite their applications to avoid special
types of redirections. As mentioned in [13], Google added an extra
regex check to make sure the redirection did not lead to resources
that could be loaded cross-origin, e.g. “jpg”, “js” and “ico”.

The navigate-to policy circumvents this by being able to block
and report different paths in the URL, i.e. it is possible to block
example.com/settings/ and allow example.com/login/. In this
case, if /settings/ redirects to /login/ for unauthenticated users,
then the CSP report log can be inspected to discern between authen-
ticated and unauthenticated users.

To fix this, path precision could be removed from the policy. If
an origin as a whole can not be trusted, it seems to add little se-
curity to trust certain paths on the origin. Since these vulnerabili-
ties affect websites that do not use navigate-to, we also present
countermeasures web developers can implement. We recommend

target.com
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avoiding redirection based on secrets. Instead, by showing an error
page or rendering the login form on the same page the website is
guaranteed to not leak any data, as there will be no redirections.
If redirection is necessary, encoding paths in GET parameters, e.g.
from example.com/files/ to example.com/?path=/files/, also
mitigates the problem.

4.1.2 Google Search profiling For vulnerabilities likeGoogle Search
profiling, as presented in Section 3.2.2, the key countermeasure is to
avoid open redirects [46].Onepossibleway forGoogle to accomplish
this without removing the I’m feeling lucky function is to use a CSRF
token [47].

4.1.3 Third-party cookie bypass The navigation path through the
redirection chain can depend on the user’s cookies. For this reason,
it is not possible to block cookies while checking if the navigation is
allowed. Instead, we suggest that cookies attained during the check
are temporarily sandboxed and then removed if the navigation is
blocked.

4.2 Implementation
4.2.1 History sniffing Privacy problems related to HTTP Strict
Transport Security (HSTS) [22] has been researched before [44].
However, they focused on tracking mechanisms similar to cookies
but harder to remove.

The solution is to ensure that an attacker can not differentiate
between the paths in Figure 3. Again, it becomes the web developers
responsibility to either use an internal redirect or not redirect on
post data.

4.2.2 Data exfiltration What makes this attack extra powerful is its
ability to regain execution control after the navigation fails. It is not
specified what should happen when the navigate-to policy blocks
a navigation attempt. Currently, Chrome seems to simulate a 204
response [58], resulting in the continuation of the script, and the pos-
sibility to exfiltrate more data. Firefox, on the other hand, uses a full-
page error that unloads the original document. By using this strategy
the script will stop executing, blocking further exfiltration. The at-
tack can also be mitigated by avoiding unsafe-allow-redirects,
as this will block the exfiltration during the pre-navigation check.

4.2.3 Ads leaking data The navigate-to directive could block redi-
rect chains which contain HTTP websites. Currently, the policy
navigate-to https:allowsnavigationtoanywebsiteusingHTTPS.
However, combined with unsafe-allow-redirects HTTP is al-
lowed in the chain, as long as the landing page is HTTPS. One
solution is to add a value unsafe-allow-https-redirectswhich
would only allow redirection by HTTPS. A more general solution is
to split the policy into navigate-to and navigate-by, where the
latter would apply as long as the request is redirected.When no redi-
rect is received, the landingpage is checkedagainst thenavigate-to
policy. By using this method, the following policy would allow any
HTTPS redirections which lead to https://example.com.
1 navigate -to https:// example.com

2 navigate -by https:

5 AutoNav
We present AutoNav, an automatic mechanism to aid web develop-
ers in inferring policies for their websites. The mechanism crawls

the website and creates a map of where pages can navigate. This
mapping is used to generate and simplify the policies. AutoNav can
generate both per-page policies, where each page on a website gets
its own policy, and origin-wide policies [59].

5.1 Inference
We use a key-value map from the crawler to infer the policies. The
page is used as a key, and a list of all possible navigations from the
page is used as a value. Listing 2 shows an example.
1 {

2 "example.com/a.html": [facebook.com , google.com],

3 "example.com/b.html": [twitter.com , google.com]

4 }

Listing 2: Example of a key-value map generate from crawling two
pages on example.com

Using the key-valuemap, AutoNav can generate separate policies
for each page on the website. This is shown in Listing 3. AutoNav
can also generate an origin-wide policy based on the union of all the
URLs, as shown in Listing 4. These policies are then simplified, using
the method described in Section 5.2, to reduce the size and improve
maintainability.
1 {

2 "a.html": "navigate -to facebook.com google.com",

3 "b.html": "navigate -to twitter.com google.com"

4 }

Listing 3: Per-page policies generated from Listing 2.

1 {

2 "*": "navigate -to facebook.com twitter.com google.com"

3 }

Listing 4: Origin-wide policy generated from Listing 2.

5.2 Policy generation
The navigation policy is a whitelist of URLs that the user is allowed
to navigate to. In the most secure setting, the policy should con-
tain the full URLs to each allowed target. While secure, this creates
big and hard to maintain lists of URLs requiring much bandwidth.
Take Wikipedia for example, their policy could consist of all sub-
domains like en.wikipedia.org, es.wikipedia.org, etc. for each
language. A more compact policy is *.wikipedia.org. This sim-
plification results in both less data being transmitted and a more
maintainable policy, however, it does decrease security as it also
allows evil.wikipedia.org.

AutoNav supplies developers with best-effort policies that aim
to help them harden their websites. Using our parameterized sim-
plification algorithm, developers get a slider style method for find-
ing a trade-off between maintainability, performance and security.
The simplification algorithm looks for evidence that all subdomains
are trusted. The two sources used are the number of URLs that
point to the subdomains (denoted 𝑡1) and the number of subdo-
mains that are pointed to (denoted 𝑡2). The motivation for 𝑡2 is that
even if multiple links are found to a.example.com it does not imply
that b.example.com should be allowed. Similarly, 𝑡1 is motivated
by the notion that the more URLs that point to *.example.com,
the more it can be trusted. Figure 4 shows the tree representa-
tion of 10 URLs pointing to example.com and its subdomains. 𝑢𝑖
in the figure represents one URL, e.g. 𝑢7 points to a resource on
test.b.www.example.com. Furthermore, the figure also includes

https://example.com
example.com
a.example.com
b.example.com
*.example.com
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(0,0)
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Figure 4: Tree representation of 10URLs collected from example.com
and its subdomains. The tuples corresponds to the (𝑡1,𝑡2) thresholds.

example.com

wwwu1, u2

*u3

u6,...,u10

Figure 5: Result of applying the simplification algorithm, using a
tresholdof (2,2) , to the tree inFigure4.Resulting inthefollowingpol-
icy, navigate-to example.com www.example.com *.www.example.com.

tuples of the threshold values (𝑡1,𝑡2). Figure 5 shows the tree after
simplificationusing a threshold of (2,2). Using thismethod thepolicy
will only contain 3 entries instead of 7 entries.

Figure 6 shows the result from crawling five pages on ebay.com
and generating a policy. The crawlerwas only suppliedwith the start
page and then found the other four using the crawling algorithm
from Section 5.3. The five pages crawled are shown in the middle of
the figure in grey with integer labels. The arrows from these nodes
indicate that a possible navigation was found between two nodes.
The colors correspond to which part of the policy covers the navi-
gation. As shown, *.ebay.com covers a lot of the subdomains, thus
they all share the same color. Using the figure, an origin policy could
be generated by taking the union of all the colors.

This method of generating policies guarantees that the function-
ality of the website will remain intact. This is because, if a domain
is in the list of possible navigations, then it will be included in the
policy. Similar to other policies, the generated policy would need to
be recalculated if the website was updated to include new possible
navigations. For security, the method guarantees that if a domain
is not in the list, then it will not be added to the policy. However,
subdomains of domains in the list can be added to the policy.

5.3 Crawling
Our implementation of AutoNav uses seleniumwith a Chrome in-
stance to crawl the pages on a website. By only supplying AutoNav
with the first URL it will automatically collect and crawl new URLs

that it finds.WhenaURL from the samewebsite is found it is added to
a set of unvisited URLs, fromwhich the next URL is picked. For each
page on a domain, all the JavaScript is executed, then the URLs from
links and forms are saved. When the crawling session is over, the in-
ferencemethod described in Section 5.1 is used to generate the policy.

5.4 Limitations
We did not take special care to crawl behind the login. However,
it is trivial for a site owner to add a session cookie to the crawler.
The more pages AutoNav can crawl the more the policy will cover.
Crawling too fewpageswill result in an incomplete yet secure policy.
The policy is secure because AutoNav will never add a domain to
the policy that has not been seen.

We use static links to infer the policies, which will miss possi-
ble redirections. While not a security concern, we would produce
more precise policies if each link was followed dynamically and the
redirections recorded.

User-agent sniffing is a common problem for crawling studies.
Since theAutoNav is designed for developerswe think they canman-
ually add entries like languages.mysite.org and use the AutoNav
to detect everything else.

6 Empirical Study
This section presents an empirical study to evaluate the performance
impact of the new directive, as well as, how different delivery meth-
ods and simplifications can reduce the impact. Next, we evaluate
AutoNav in howwell automatically generated policies based on a
subset of the website cover the full website.

To test how the new navigate-to policy will function on com-
mon websites we utilize AutoNav in a crawling experiment. For
calculating the performance impact in Section 6.1, we use Alexa’s
top 10,000 websites. For evaluating AutoNav itself we use Alexa’s
top 14,000, ensuring we have 10,000 domains which all have more
than 100 pages each.

6.1 Policy tradeoffs
This section presents the performance tradeoffs between per-page
andorigin-widepolicies togetherwith thedeliverymethodsofHTTP
headers and origin policy.

The costs in Table 3 are based on a user visiting 𝑛 pages on a
website, thus the cost of HTTP headers need aggregation over all
pages, i.e.

∑
𝑖≤𝑛 . The cost of sending a single CSP policy depends on

the number of URLs it contains. We defined the cost of the policy
based on the set of URLs, i.e. |𝑈𝑖 |,𝑈𝑖 being the set of URLs on page
𝑖 . Further, we can define a set of all URLs as the union of the sets of
URLs on each page as

⋃
𝑗≤𝑛𝑈 𝑗 , with corresponding

Empirical performance Based on the 10,000 crawled domains, a
per-page policy, without any simplifications, would increase the
header sizewith 215 bytes, per response.Amoremaintainable origin-
wide policy results in a size increase to 1904 bytes. This cost can
be decreased by using the origin policy for delivery, in which case
the user only downloads the policy once. Note, as shown in Table 3,
that an origin policy outperforms a per-page policy after only 9
responses. While per-page policies might seem better, they are dif-
ficult to use since they require knowledge about the content on each
page. As such, some website, e.g. Facebook, use origin-wide policies,
motivating the need for an origin policy delivery method.

example.com
ebay.com
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Figure 6: Generated policies for ebay.com. The nodes with outwards pointing arrows are the five pages that we crawled. All the other nodes
correspond to a possible navigation. The color indicates which part of the policy covers the navigation.

In addition to the comparison between per-page and origin policy,
we also evaluated the cost benefits of using our policy simplification
algorithm. Using maximum simplifications, i.e. 𝑡1=1,𝑡2=1, the aver-
age size of the origin wide policy decreases from 1904 to 1004 bytes,
a decrease of 47%. Similarly, the per-page policy decreases from 215
bytes to 129 bytes, which is a 40% decrease. For some websites, the
benefit of simplification is much greater. In particular, this is the case
whenwebsites allownavigation to numerous subdomains. For exam-
ple, spravker.ruwould require a 20438 byte origin policy without
simplification, but only 61 bytes after simplification. The big differ-
ence stems from the fact that spravker.ru have 954 subdomains.

Table 3: Empirical costs for different policymodels.

HTTP Origin Policy
Per-page

∑
𝑖≤𝑛

215 -

Origin-wide
∑
𝑖≤𝑛

1904 1904

We also performed a more in-depth analysis of three websites,
ebay.com, wikipedia.org and stackexchange.com, to see how
the threshold affect performance. Fixing 𝑡1 to 0, we only focus on
the number of subdomains when deciding if wildcards should be
used. Figure 7 shows these domains as solid lines, together with
the corresponding costs for their origin policies. As can be noted,
after the 𝑡2 threshold reaches 280 subdomains Wikipedia can no
longer use the wildcard and the policy quickly increases in size. By
increasing 𝑡1 to 1000, more URLs are required before simplifications
can take place. As can be seen in the dashed lines in Figure 7, the
crawled data fromWikipedia did not contain enough URLs to the
same domain for a simplification. Thiswould be the desired behavior
if Wikipedia required high assurance before introducing wildcards.
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Figure 7: Cost of origin policy for different domains and simplifica-
tion thresholds. The y-axis shows policy size in bytes and the x-axis
shows the 𝑡2 threshold. The legend shows the 𝑡1 threshold

6.2 Coverage
While full coverage may be desirable, the goal of AutoNav is to help
even if the coverage is not complete, by providing a useful baseline
policy for developers to build on.

Our coverage was generated similarly to the method used in
CSPAutoGen [37]. We generate the policy based on a training set
of 80% of the pages on a domain and then test howwell they match
the other 20%. We define𝑈 as the set of URLs in the training set. For
the 𝑛 pages in the validation set, we check if URLs on the page are
covered, i.e. 𝑝𝑖 ⊆𝑈 , where 𝑝𝑖 is the set of all the URLs on page 𝑝𝑖 .
Finally the coverage of a website is calculated as: 𝑐 = | {𝑝𝑖 :𝑝𝑖 ⊆𝑈 } |

𝑛

ebay.com
ebay.com
wikipedia.org
stackexchange.com
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Using this formula, 𝑐 is calculated for all the websites that were
crawled. In total 42% of all the websites were fully covered and for
59% of the websites 95% or more were covered. Note that these re-
sults come from only crawling 100 pages, deeper crawls can greatly
increase this coverage.

7 Related work
Automatic methods for generating CSP policies have been studied
before [12, 16, 18, 37]. deDacota by Doupe et al. [12] performs static
analysis of ASP.NET code in order to separate JavaScript code from
data. After the JavaScript has been separated into files, a CSP policy
was generated for the file. AutoCSP by Fazzini et al. [16] takes a sim-
ilar approach by analysing server-side code, PHP in this case. How-
ever, AutoCSP uses dynamic taint tracking instead of static analysis,
allowing it to createpolicies for inline JavaScript events andCSScode.
While bothAutoCSP and deDacotawere successful, they required ac-
cess to the source code of the application. In contrast, AutoNavuses a
black-box approachwhich removes the need for the source code. Fur-
thermore, the aforementioned methods focus on JavaScript and CSS,
while our focus is onnavigation andURLs. In addition, static analysis
of source code will miss many URLs since modern web applications,
likeWordPress, store content in the database and not in the code.

In addition, researchhasbeendoneongeneratingpolicieswithout
access to the source code. Golubovic’s autoCSP [18] method utilizes
a reverse proxy and the report function in CSP to run an application
in learning mode. In this mode, the tool externalizes inline code and
generates policies for the scripts that should be allowed. A drawback
is that autoCSP requires manual navigation through the application
to ensure all scripts are triggered.While thisworkswell for scripts, it
becomes challenging when all possible links need to be navigated. A
similar approach based on the report function in CSPwas utilized by
King’s Firefox extension Laboratory [30]. Laboratory is impressive
as it enables users to record and generate CSP policies in real-time
while visiting a website. Starting with a strict policy, it gradually
weakens it as violation reports are received.While thismethod could
be extended to include navigations, it would require the user to ini-
tiate all possible navigations on each page. Instead of relying on the
reporting functionality, our method uses a combination of static and
dynamic analysis to record the navigations a document can initiate.
By doing this we avoid the problem of having to initiate all naviga-
tions to generate a report. We also improve on the manual aspect
of traversing a website by implementing an automatic crawler, as
suggested by Golubovic, in future works.

CSPAutoGen Pan et al. [37] is also intended to automatize CSP
generation. CSPAutoGen uses a crawler to analyze websites and
try to infer which scripts should be allowed. Similar scripts are also
generalized into abstract syntax trees, based on howmany similar
scripts are found. Once a policy has been inferred, CSPAutoGen
functions as a proxy between the client and the server. This enables
CSPAutoGen to rewrite requests and responses in real-time, without
needinganyCSPconfigurationson thewebsite.This is agreat feature
when a server needs to be secured without any direct modification.
While a similar approach could be used for URLs and navigation, our
goal is to generateCSPpolicies that can be used by the server directly.

In addition to policy generation, we benefit from origin-wide poli-
cies [59]. Similarly to the work on evaluating general origin-wide
policies by Van Acker et al. [50], our results also indicate that an

origin-wide policy provides additional security without degrading
performance.

8 Conclusion
Security We have performed a security analysis of the emerg-

ing CSP directive navigate-to. Our findings show that the current
specification and implementations introduce new vulnerabilities.
The vulnerabilities include methods for resource probing, login de-
tection, circumventing blockage of third-party cookies, as well as,
history enumeration. To mitigate these problems we propose coun-
termeasures to both the specification and implementation of the
directive. We demonstrate that the directive triggers vulnerabilities
even in websites that do not use the directive in their policies. Thus,
we also propose countermeasures web developers can make to their
applications in order to mitigate the possibilities of being exploited.

Automatization We have evaluated the possibility of automat-
ically generating policies to help developers adopt the policy, we
created AutoNav. AutoNav uses a black-box approach to crawl web-
sites and generate CSP policies that can be directly applied to the
website. Our results show that in total 42% of all the websites were
fully covered and for 59% of the websites 95% or more were covered.
We further simplify the process by identifying categories of websites
which the policy better fits. Our research shows that shopping and
adult websites are best covered. These websites have a high incen-
tive to keep the users on their site, with the exception of linking to
sponsors or partners, which AutoNav’s policies cover.

Performance To analyze the performance of navigate-to we
have conductedanempirical studyofAlexa’s top10,000websites. For
each website, we have crawled 100 pages and based on theses gener-
ated policies. We show that on average this directive would increase
the header size by 215 bytes per request. However, using our simplifi-
cation algorithmweproducemoremaintainable policieswhichwere
also 40% smaller on average. Our results indicate that using an origin
policywould require a one time cost of 1904 bytes, or 1004 using sim-
plifications, as opposed to 215 bytes per request. Thus we show that
the performance hit from the increased security can be efficiently
mitigated by adopting an origin policy with suitable simplifications.

Coordinated disclosure We are in the process of disclosing the
discovered vulnerabilities to the affected vendors, including Google
where both Chrome’s implementation of navigate-to directive
and the Google Search website are affected. Based on our recom-
mendations Firefox chose to harden their implementation against
exfiltration attacks, as explained in Section 4.2.2.
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