
No Signal Left to Chance: Driving Browser Extension Analysis by
Download Patterns

Pablo Picazo-Sanchez

Chalmers University of Technology

Gothenburg, Sweden

pablop@chalmers.se

Benjamin Eriksson

Chalmers University of Technology

Gothenburg, Sweden

beneri@chalmers.se

Andrei Sabelfeld

Chalmers University of Technology

Gothenburg, Sweden

andrei@chalmers.se

ABSTRACT
Browser extensions are popular small applications that allow users

to enrich their browsing experience. Yet browser extensions pose

security concerns because they can leak user data and maliciously

act on behalf of the user. Because malicious behavior can manifest

dynamically, detecting malicious extensions remains a challenge for

the research community, browser vendors, and web application de-

velopers. This paper identifies download patterns as a useful signal

for analyzing browser extensions. We leverage machine learning for

clustering extensions based on their download patterns, confirm-

ing at a large scale that many extensions follow strikingly similar

download patterns. Our key insight is that the download pattern

signal can be used for identifying malicious extensions. To this

end, we present a novel technique to detect malicious extensions

based on the public number of downloads in the ChromeWeb Store.

This technique fruitfully combines machine learning with security

analysis, showing that the download patterns signal can be used to

both directly spot malicious extensions and as input to subsequent

analysis of suspicious extensions. We demonstrate the benefits of

our approach on a dataset from a daily crawl of theWeb Store over 6

months to track the number of downloads. We find 135 clusters and

identify 61 of them to have at least 80% malicious extensions. We

train our classifier and run it on a test set of 1,212 currently active

extensions in the Web Store successfully detecting 326 extensions

as malicious solely based on downloads. Further, we show that by

combining this signal with code similarity analysis, using the 326

as a seed, we find an additional 6,579 malicious extensions.

CCS CONCEPTS
• Security and privacy→ Browser security; Web application
security.

KEYWORDS
Web Security; Browser Extensions

ACM Reference Format:
Pablo Picazo-Sanchez, Benjamin Eriksson, and Andrei Sabelfeld. 2022. No

Signal Left to Chance: Driving Browser Extension Analysis by Download

Patterns. In Annual Computer Security Applications Conference (ACSAC ’22),
December 5–9, 2022, Austin, TX, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3564625.3567988

This work is licensed under a Creative Commons Attribution International

4.0 License.

ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9759-9/22/12.

https://doi.org/10.1145/3564625.3567988

1 INTRODUCTION
Browser extensions are popular small web applications that users

install in modern browsers to enrich the user experience on the web.

Google’s official extension repository, ChromeWeb Store, currently

has more than 180,000 extensions between browser extensions,

apps, and themes, with many extensions having millions of users.

Driven by the popularity of Chrome extensions, browser exten-

sion ecosystems have been adopted not only by Chromium-based

browsers like Opera, Brave, andMicrosoft Edge but also by browsers

like Firefox and Safari. The latter browsers draw on the same ar-

chitecture, allowing developers to export their Chrome extensions

easily. When an extension is installed, the browser typically sends

a message showing the permissions this new extension requests.

The extension is installed and integrated within the browser upon

user approval.

The benefits of using browser extensions come at the high price

of granting access to a vast amount of sensitive information. Ex-

tensions get and interact with all the content of users’ web pages.

Also, suppose the extension defines the corresponding permissions.

In that case, it can run some of the restricted APIs the browser

exposes to extensions to retrieve sensitive information such as

cookies, history and even modify the network traffic without the

user’s knowledge. This raises serious security and privacy concerns

[55, 56, 71].

ChromeWeb Store. Extensions are usually stored in private repos-
itories managed by vendors, where extensions developers upload

them to be freely distributed afterward. The most popular browser

extensions repository is the Web Store governed by Google, which

banned the possibility of manually installing browser extensions

from other sites different than the Web Store years ago [12].

The Web Store implements a Collaborative Filtering Recommen-

dation System (CFRS) [25] in such a way that extensions are ranked

or featured to make it easier for users to find high-quality content.

This ranking is performed by a heuristic that considers user rat-

ings and usage statistics, such as the number of downloads and

uninstalls over time.

Inherent to CFRS, attackers have always been trying to pro-

mote or demote apps by automatically modifying ratings and raters

[10, 45], or faking the downloads [8, 18]. Also, the proliferation of

crowdsourcing sites like Zeerk, Peopleperhour, Freelancer, Upwork,

and Facebook groups, have helped on this matter [44]. Among other

things, by boosting some apps, developers may get funding from

venture capitalists when their apps are popular among users [24].

The Web Store implements a set of fraud detection and defense

mechanisms so that attackers cannot alter the ranking that easily

[45]. Similar to Android Google Play, users can only review and

rate an extension only if they 1) are logged in to the Web Store, and;

https://doi.org/10.1145/3564625.3567988
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3564625.3567988

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

2) install it first, being easier for Google to detect fake users trying

to exploit the CFRS. However, this is not the case with downloads.

To download and install extensions, users need a Chromium-based

browser, e.g., Chromium, Chrome, and Brave. Therefore, the num-

ber of downloads can be easily altered by automatic processes,

being difficult to differentiate between real users and automatic

downloads. In this paper, we are particularly interested in how the

downloads of the extensions can be used for grouping browser ex-

tensions based on the download patterns and identifying malicious

ones based on such patterns.

Extensions’ Downloads.Wemonitored the number of downloads

of browser extensions over 6 months and observed that the function

defining the number of downloads is monotonically increasing over

time for most extensions. However, there is a remarkable number of

extensions whose downloads: i) do not follow an organic download

pattern, i.e., they are syncedwith others, following the same pattern;

ii) experience many fluctuations thus not following a monotonic

function, and; iii) deviate from the usual growing pattern, i.e., they

grow and/or decrease various orders of magnitude within two or

three days. This leads to the insight that the number of downloads

of the extensions can be leveraged as a useful signal for analyzing

browser extensions. Hence, we pose three research questions:

RQ1: Are there extensions that follow similar download patterns?

RQ2: Is there any relationship between download patterns and

malicious code?

RQ3: Can we find malicious extensions based on their download

patterns?

To answer these questions, we crawled the Web Store daily for

171 days and analyzed the download patterns of over 160,000 ex-

tensions. We clustered the extensions concerning such patterns

and found 135 clusters. Later, we analyzed the security of the ex-

tensions that compose these clusters and identified 61 of them to

have at least 80% malicious extensions. Using a supervised learning

algorithm, we trained two classifiers and evaluated them against

1,212 currently active extensions in the Web Store. The first clas-

sifier predicts which cluster the test set extensions are in in the

training set. Afterward, a threshold is used to mark all extensions

in a cluster as either malicious or benign based on the fraction of

malicious extensions in the cluster. The second classifier directly

predicts if an extension is malicious or benign. The first classifier

successfully detects 326, and the second detects 289 extensions

as malicious solely based on downloads. The classifiers consider

both the pattern and the security labels, meaning any pattern is

not an indication of maliciousness, it must closely match malicious

patterns. Extensions that receive fake downloads, also known as

astroturfing, are only marked as malicious if they match a malicious

pattern. While the classifier can find malicious extensions alone, it

can also be beneficially combined with other methods. To this end

we combine the download pattern signal and code similarity analy-

sis to discover an additional 6,579 malicious extensions. In this case,

the code similarity approach needs malicious seed extensions and

would not find any malicious extensions without the extensions

from the download signal.

Contributions. In detail, our contributions are:

• We describe the methodology we use to retrieve and analyze

the data from the Web Store (see Section 3);

• We show our results, supporting that RQ1) Extensions fol-
low similar patterns. RQ2) These patterns can be correlated

to maliciousness RQ3) We can find new active malicious

extensions based on the download patterns. (see Section 4);

• We present a set of 29malicious extensions whose downloads

are all synced and hijack the search queries of the users,

in combination with code analysis we discover 6,579 extra

hijacker extensions that remain hidden in the Store (see

Section 5).

We introduce some basic definitions for an easy understanding

of the paper in Section 2, discuss the threats to validity in Section 6,

offer a summary of the most relevant related work in Section 7 and

conclude the paper in Section 8.

Coordinated disclosure. We reported to Google 6,579 the ma-

licious extensions detected in our empirical study as well as our

methodology. The Chrome Web Store team removed 4,858, while

1,721 are still under investigation.

Artifacts. We open-source our code and data needed to reproduce

the results presented in this paper [40].

2 PRELIMINARIES
In this section, we summarize the security and privacy threats

that extensions pose, some basic concepts of time-series, some

definitions we use in the paper and introduce the threat model.

2.1 Browser Extensions’ Security & Privacy
Browser extensions are small applications that can help developers

and users develop new web applications or surf the Internet. How-

ever, due to the amount of sensitive information the extensions have

access to when they run in the users’ browsers, the security and

privacy of such data have cast doubt on adopting the extensions.

Extensions are composed of two main parts, content scripts and

background pages. The former are scripts automatically injected

into the web pages the extension defines in the manifest file under

the content_scripts key. On the other hand, background pages

are scripts with no direct access to the web content but with access

to a set of restricted and privileged APIs the browser exposes, e.g.,

network traffic, cookies, and history. To access these APIs, the

extension has to define the permissions associated with every API

it attempts to use in the manifest file.

2.2 Time-Series Analysis
A time series is a set of data points ordered by time. There are

different metrics to compare two time series, i.e., how similar they

are, usually based on the data points’ distance of the series. Themost

common examples are the Euclidean distance, the Longest Common

Subsequence (LCS), and the Dynamic Time Warping (DTW), being

this last one the most common distance used to compare time-series

[17]. In addition, Canonical TimeWarping (CTW) is a method based

on Dynamic Time Warping (DTW) that aligns time series under

rigid registration of the feature space, not being needed that time

series share the same size nor the same dimension.

No Signal Le� to Chance: Driving Browser Extension Analysis by Download Pa�erns ACSAC '22, December 5�9, 2022, Austin, TX, USA

Learning in Machine Learning (ML) can be classi�ed into two
main families: supervised and unsupervised. Supervised learning
needs labeled data to learn the mapping function from an input
to an output, whereas in unsupervised learning algorithms, there
is no labeled data; therefore, they learn patterns from the input
data. Research in supervised and unsupervised learning algorithms
applied to time series is quite active nowadays.

Clustering is an unsupervised learning technique by which simi-
lar data are grouped with little or no knowledge in advance about
the data. Time-series clustering is a particular case where the series,
a large number of points measured chronologically, are handled
as single objects to extract patterns among them [3]. Examples of
algorithms used for time-series clustering are Self-Organizing Map
(SOM) [3], k-means [27], and k-shapes [38].

Classi�cation is a supervised learning technique by which an
algorithm analyzes a training dataset and outputs function used for
determining the labels of new examples. Some examples of algo-
rithms for time-series classi�cation are KNeighbors [58], Support
Vector Machines (SVM) [29], Rocket [15], and Minirocket [16].

2.3 De�nitions
In the following, we explain in detail each one of the key concepts
used throughout this paper.

Downloads. The number of downloads the Web Store publicly
exposes for every extension (e) at timet.

Increment of downloads (� d4). Is the di�erence, in absolute value,
of two consecutive downloads of an extensione, i.e.,� d4 =
jC8 � C8̧ 1j.

Average of the increment (� d4). Is the arithmetic mean of the

increment of the downloads, i.e.,� d4 =
Í =

8=1 � d4
= , where8Ÿ =

and= is the number of measurements per extension.

Average of the average of the increment (�). Is the arithmetic
mean of all the average of the increment of the downloads

of the extensions, i.e.,� =
Í 4

8=1 � d8
= , where8 Ÿ= =, = is the

number of extensions and� 38 is the average of the increment
of an extension8.

2.4 Threat Model
Extensions can pose many threats to users' privacy and security.
Previous works have analyzed extensions that inject adware, track
and �ngerprint users, takeover search engines, modify security
headers, execute remote code, persuade and steal user's search
queries [4, 11, 20, 33, 37, 50�52, 54�56].

In this work, we focus on a subset of these attacks: the search
query stealing attack. This is prominently used by �Wallpaper� ex-
tensions user's search queries [20]. These extensions override the
new tab functionality of the browser such that when the user opens
a new tab, this is replaced by the one the extension provides. They
usually provide a search bar with some arbitrary wallpaper back-
grounds. However, these extensions can redirect search requests
containing sensitive queries and redirect them to di�erent URLs
(see Table 5). Generating the security ground truth for extensions
is a huge challenge and requires manual e�ort. We can implement
e�cient and accurate methods for this analysis by focusing on one

class of attacks (see Section 3.2. Simply reusing previous analy-
sis methods would be futile as Google now knows these and can
remove the corresponding malicious extensions.

3 SCRUTINIZING THE WEB STORE
A Collaborative Filtering Recommendation System (CFRS) is a sys-
tem that keeps track of the users' preferences to use it afterward to
o�er new suggestions to other users [35]. Youtube, Amazon, and
Net�ix are examples of applications that implement CFRSs [47, 66].
This is also the case with the Google Web Store, the online mar-
ketplace where browser extensions are freely distributed. The Web
Store implements a CFRS where extensions are ranked based on
parameters like user ratings, number of downloads, and uninstalls
over time.

Even though the algorithms used by the CFRS are usually un-
known, researchers found attacks against the recommendation
system, being pollution attacks the most common ones [23, 47, 66].
Such attacks consist of generating fake data, typically in the form of
new users who interact with the system by watching videos, read-
ing books, and rating or downloading items. By doing so, attackers
may promote or demote items as desired.

Some of the information the Web Store o�ers for each browser
extension is the category it belongs to, the name of the developer,
the company, a general description, some privacy practices, users'
reviews, the number of downloads, the rates that users give or
metadata like the version of the extension, and when it was updated.

This section presents the methodology we follow to identify
download patterns as a useful signal for analyzing browser exten-
sions. We leverage machine learning for clustering extensions based
on these patterns, con�rming at a large scale that many extensions
follow strikingly similar download patterns (see Section 4).

We split our methodology into three main tasks (see Figure 1):
Data Gathering Daily monitoring of the Web Store to extract

downloads of all the browser extensions;
Security Analysis We combine static, manual, and dynamic anal-

ysis to mark malicious extensions, and;
Time-Series Analysis Firstly, group extensions according to the

downloads function they describe (based on� d4) and look
for patterns (clustering phase) and label them based on the
security analysis. Secondly, we implement a learning algo-
rithm based on the downloads.

3.1 Data Gathering
Between March 2021 and Aug 2021, we crawled the Web Store daily,
monitoring the extensions' downloads (see Appendix A) and their
version. At the time of writing, there are 10,941 extensions whose
downloads are not shown on the page. Unfortunately, we do not
know why some are hidden. From all the download patterns, we

extract all the extensions whose� d4 is larger than� . These are
the extensions whose downloads �uctuate more than the global
average in the store.

Dataset Filtering. After the extraction of all the public data
of the extensions, we �ltered the dataset in terms of size (number
of extensions) and data information (number of measurements).
This allowed us to perform a more accurate security analysis in
Section 3.2 and better clustering in Section 3.3. This �ltering process

ACSAC '22, December 5�9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

Figure 1: Systematic methodology to cluster and extensions.

neither a�ects the results nor the methodology presented in this
paper. With more manual e�ort, in terms of time spent on security
analysis and clustering, and increasing the frequency of the data
gathering, we believe this method can be extended to any group of
extensions and attacks.

First, we focused on a subset of extensions called wallpapers,
i.e., browser extensions that override the starting page the user
previously had and replace it with a random background image that
changes every time the user refreshes the webpage and a search box
in the middle of the screen. We did so because researchers recently
showed that many extensions attempt to steal users' search queries
[20]. Wallpapers can be found in the 11 categories of the Web
Store. To get all the wallpapers, we �ltered out extensions that do
not de�ne chrome_url_overrides in their manifests. Second, we
analyzed those extensions with more than 90 measurements, which,
given our crawling frequency, corresponds to at least 90 days.

3.2 Security Analysis
In accordance with our second research questionIs there any rela-
tionship between download patterns and malicious code?We need
to perform a security analysis of the extensions to label them as
malicious or benign. Using these security labels we can search for
relationships between clusters and malicious code.

While extensions can perform many possible attacks, we focus on
malicious extensions that change the user's search engine without
notice or steal their queries. This can be accomplished either by
redirecting the search or using analytics. To detect this, we develop
a fully automatic dynamic analysis method and verify it using a
combination of static and manual analysis (see Appendix D).

3.3 Time-Series Analysis
Ideally, after 171 days of daily monitoring, we should have gath-
ered 171 measurements per extension. However, extensions can be
deleted or added, thus a�ecting the number of downloads collected

Figure 2: Number of days (x-axis) monitoring the extensions
(y-axis in log scale).

(a) Euclidean distance (b) DTW distance

Figure 3: DTW vs Euclidean distance applied to extensions
downloads time-series.

per extension. We show in Figure 2 the distribution of how long
the extensions in our dataset were online in the Web Store.

Clustering . To answer our �rst research question (RQ1): Are
there extensions that follow similar download patterns?We apply
state-of-the-art clustering methods. The results from this clustering
will illuminate if there are any clusterable download patterns.

No Signal Le� to Chance: Driving Browser Extension Analysis by Download Pa�erns ACSAC '22, December 5�9, 2022, Austin, TX, USA

Given the heterogeneous distribution of the data, i.e., exten-
sions are alive in the Web Store for di�erent periods, we could not
implement classical clustering methodologies based on euclidean
distances like DBSCAN or other statistical values such as mean
like K-means. The reason is that to compare two time-series using
the euclidean distance, both series need exactly the same amount
of data as well as being synchronized (see Figure 3a). Instead, we
adopted a well-known technique in time-series clustering named
Dynamic Time Warping (DTW) that solves the aforementioned con-
straints by computing a discrete matching between the elements of
both series rather than using their time sequence [3] (see Figure
3b).

In this paper, we follow a so-called Human-in-the-Loop (HitL)
methodology [65] combined with DTW to cluster time-series down-
loads of browser extensions. To do so, we deploy an instance of
dtadistance library [34] combined with COBRAS-TS [62], an interac-
tive version of COBRA [13] that allows semi-supervised clustering
of time series. However, this process can be fully automatized with-
out including humans in the clustering algorithm.

Classi�cation . To answer our third research question:Can we
�nd malicious extensions based on their download patterns?We create
two classi�ers that aim to classify extensions as malicious solely
based on download patterns. The �rst one classi�es directly based
on download patterns, while the second cluster similar patterns
before classifying each cluster as malicious or benign. The second
predicts which cluster from the training set the extensions in the test
set are closest to. Finally, we compare a thresholdCto the fraction
of malicious extensions in the cluster. We mark the extension as
malicious ifCis greater than this fraction.

We implement and evaluate an instance of MiniRocket [16]. We
split our extensions dataset into training and test sets. To simulate
a realistic scenario of our approach, we use all extensions that had
been deleted at the end of the data-gathering phase as the training
set and the still-active ones as our test set.

We evaluate our model according to three main metrics: preci-
sion, recall, and F1-Score. Precision measures how many positive
predictions are true, i.e.,TP•¹ TP¸ FPº. Recall measures how many
positive classes the model can predict, i.e.,TP•¹ TP¸ FNº. Finally,
F1-Score is the harmonic mean of both recall and precision, i.e.,
2¹recall� precisionº•¹ recall¸ precisionº.

4 RESULTS
This section presents the results from our data gathering, security,
and time-series analysis. We use these results to answer our research
questions.

4.1 Data Gathering
After 171 days of monitoring, we collected download patterns for
159,572 extensions. Figure 4 shows the distribution of the average
of the increments of the downloads (� d4) of all the extensions of the
Web Store. Interestingly, we can see that there are many outliers,
i.e., extensions whose� d4 is higher than 10, 1,000, or even 10,000
downloads. We marked with a green triangle in Figure 4 the average

of � of the extensions (around 97.6). Even though we could have

Figure 4: Distribution of the average of the increment of
downloads (� d). The � d of 8,165 extensions is higher than

the average (�).

Figure 5: Distribution of the average of the increment of
downloads group by the 11 categories of the Web Store.

analyzed all the extensions of the Web Store, we restricted ourselves
to the 8,165 outliers extensions whose average of� d4 � 97.6.

In Figure 5 we split the dataset into the categories the extensions
belong to. We also extracted the last public downloads the Web Store
o�ered per extension and include in Figure 10 (Appendix B) the
download distribution of extensions split into categories. Although
there are some extensions with millions of downloads, in general,
we can observe that most of the browser extensions have been
downloaded less than a hundred times, with even fewer downloads
in some categories, including �blogging�.

In summary (see Figure 6), we collected 159k download patterns
from the Web Store. From these, 35k are wallpaper extensions,
where 22k are still active, and 13k are deleted. From them, we �rst
�ltered extensions with interesting download patterns, (i.e.,� d4 �
97.6), getting 1,629 and 2,673 still-active and deleted wallpapers
respectively. Finally, because of our crawling frequency (once a day),
to increase the useful information of the downloads and thus reduce
the false positives, we analyze the downloads of the extensions that
remained in the Web Store longer than 90 days, resulting in a total
of 1,212 and 2,059 alive and deleted extensions. We use these 3,271
wallpaper extensions for security analysis and clustering.

4.2 Security Analysis
This section presents the results of our automatic security analysis,
where we �nd 1,292 malicious extensions. These labels are used in
Section 4.3 to answer our second research question:Is there any
relationship between download patterns and malicious code?

ACSAC '22, December 5�9, 2022, Austin, TX, USA Picazo-Sanchez, et al.

Figure 6: Filtering Process. Extensions on every step.

Table 1: Popular domains used by query stealing extensions.

Domain #Extensions

cse.google.com 146
mc.yandex.ru 134
gundil.com 116
cors-anywhere.herokuapp.com 100
www.google-analytics.com 92
completion.amazon.com 60
s.bingparachute.com 42
addiyos.com 16
the-theme-factory.com 14
chromethemesonline.net 11

We dynamically executed and analyzed 2,858 extensions, which
is the number of extensions we had the source code for (see Figure 6).
For the remaining 413 extensions, we marked them as benign since
we can not prove they are malicious.

Scanning extensions. We �rst analyzed extensions that immedi-
ately stole queries instead of waiting before stealing them. Here we
found 441 malicious extensions stealing search queries. These use
a combined total of 182 di�erent domains for their query stealing.
However, one extension can use multiple domains, e.g., one exten-
sion1 uses search.myway.com for searching while simultaneously
using Google Analytics to log the query.

We present the ten most used domains in Table 1. Note that these
domains are not necessarily malicious but are used by malicious
extensions. For example, cse.google.com is not malicious but is
commonly used by spyware [14].

Scanning websites. To detect delayed attacks, we also analyzed
the websites used by extensions marked as benign. We found three

1bcdhacjdengeibbbhmdjodiecaiciehc

Table 2: Domains scanned in Phase 2.

Domain Malicious? #Extensions

www.tabhd.com Yes 667
www.ultitab.com Yes 184
themes.wallpaperaddons.com No 1

(a) TabHD extensions (b) MyWay extensions

Figure 7: Download patterns for two malicious clusters.

domains used by 852 extensions (see Table 2). We analyzed each for
an hour and detected both www.tabhd.com and www.ultitab.com
switch from benignly using Google to maliciously using gundil.com.
themes.wallpaperaddons.com was consistently using Google and
was therefore marked as benign. Combining the two scans, we
found 1,292 malicious extensions. Finally, we verify these labels by
manually checking a sample of 100 extensions labeled as benign.
Three out of these were incorrectly marked as benign. We discuss
the general limitations more in Section 6, and more details about
the veri�cation can be found in Appendix E.

4.3 Time-Series Analysis
Clustering. This section presents the results of our clustering

and how it relates to our �rst research question (RQ1): Are there
extensions that follow similar download patterns?After clustering

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Browser Extensions' Security & Privacy
	2.2 Time-Series Analysis
	2.3 Definitions
	2.4 Threat Model

	3 Scrutinizing the Web Store
	3.1 Data Gathering
	3.2 Security Analysis
	3.3 Time-Series Analysis

	4 Results
	4.1 Data Gathering
	4.2 Security Analysis
	4.3 Time-Series Analysis

	5 Use Case: Search Hijacking Wallpapers
	5.1 Wallpapers Discovering

	6 Discussion & Limitations
	7 Related Work
	8 Conclusions
	References
	A Web Store Downloads
	B Dataset Distribution
	C Source Code
	D Ground truth Generation
	D.1 Dynamic Analysis
	D.2 Verification Method

	E Verification Results
	F Clusters

